Prediction of Research Topics Using Ensemble of Best Predictors from Similar Dataset
نویسندگان
چکیده
Prediction of future research topics by using time series analysis either statistical or machine learning has been conducted previously by several researchers. Several methods have been proposed to combine the forecasting results into single forecast. These methods use fixed combination of individual forecast to get the final forecast result. In this paper, quite different approach is employed to select the forecasting methods, in which every point to forecast is calculated by using the best methods used by similar validation dataset. The dataset used in the experiment is time series derived from research report in Garuda, which is an online sites belongs to the Ministry of Education in Indonesia, over the past 20 years. The experimental result demonstrates that the proposed method may perform better compared to the fix combination of predictors. In addition, based on the prediction result, we can forecast emerging research topics for the next few years. Keywords—Combination, emerging topics, ensemble, forecasting, machine learning, prediction, research topics, similarity measure, time series.
منابع مشابه
Prediction of Research Topics on Science & Technology (S&T) using Ensemble Forecasting
Proper resource allocation on research requires accurate forecasting for the future research activities. Forecasting task can be done using judgmental or numerical analysis. Bibliometric analysis is a quantitative method to determine the trend of research area by counting the frequency of certain keywords using journal publication or patents. This paper reports the implementation of our new for...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملMeta-prediction of protein subcellular localization with reduced voting
Meta-prediction seeks to harness the combined strengths of multiple predicting programs with the hope of achieving predicting performance surpassing that of all existing predictors in a defined problem domain. We investigated meta-prediction for the four-compartment eukaryotic subcellular localization problem. We compiled an unbiased subcellular localization dataset of 1693 nuclear, cytoplasmic...
متن کامل